21 research outputs found

    Green Carbon: Making sustainable agriculture real

    Get PDF
    The concept of sustainable development has evolved from a mere movement for the protection of the environment, to other multidimensional approaches. Indeed, today it calls for a holistic approach, seeking to preserve and improve not only the environment, but also to achieve social equity and economic sustainability. In Europe, society demands quality and safe products, not only in the industrial sector but also in agriculture. According to FAO, sustainable agriculture development is a key element of the new global challenges to meet human food security needs at 2050. Unsustainable practices based on intensive soil tillage and agro-chemical applications have increased agri-environmental risks. Whereas world’s food needs are expected to increase by 70% by 2050, agricultural land in Europe will also have to face environmental, economic and social challenges related to sustainable agriculture. As a result, in the EU 2020 Strategy, it is expressed that the new Common Agricultural Policy (CAP) is required to contribute to smart, sustainable and inclusive growth, enhancing social well-being, providing ecosystem services, managing resources sustainably while avoiding environmental degradation. There is broad consensus within the scientific sector that human actions generate a large portion of the greenhouse gas (GHG) emissions, causing global warming. Certainly, Kyoto Protocol states it. According to the European Environmental Agency (EEA), there has been a decrease of 17% in GHG emissions between 1990 and 2009. However, EEA also stressed the importance of the agricultural contribution to total emissions (10.3%). The fossil fuel used in agricultural field operations, along with increasing CO2 emissions from soil through tillage, are considered to be one of the main direct sources of GHG emissions from agriculture sector. Increased inputs required to sustain conventional agriculture also adds significantly to total GHG emissions. Therefore, intensification of production through tillage, agro-chemicals and heavy machinery, which characterizes conventional agriculture in Europe, strongly contributes to increased net GHG emissions instead of mitigating global warming. Sustainable agricultural soil management is crucial for mitigating climate change, especially for the restoration of lost soil organic carbon. In fact, "Agricultural soils management" is recognized as one of the 15 most promising technology options for reducing GHG emissions in the COM (2005) 35 final "Winning the battle against global climate change." The Green Carbon Conference aims to show sustainable management of agricultural soils can help to agriculture mitigate and adapt to climate change, being compatible with the objectives of environmental protection, enhancing biodiversity and supporting farmers’ welfare along with many other environmental, economic and social benefits. Over the last decade, Conservation Agriculture has become known as a set of interlinked agricultural practices, of no or minimum mechanical soil disturbance, maintenance of soil mulch cover, and diversified cropping system, capable of: (a) overcoming several of the severe sustainability limitations of conventional agriculture; and (b) raising productivity, enhancing resilience, reducing degradation and increasing the flow of ecosystem services. The discussion around both the Soil Thematic Strategy initiated in 2002, and the JRC SoCo (Soil Conservation) project clearly recognized the potential of Conservation Agriculture in mitigating and even reversing the problems of soil erosion, soil organic matter decline, soil compaction, loss of biodiversity, climate change vulnerability, among others. Whereas Conservation Agriculture is now practiced successfully on more than 125 million hectares worldwide, Europe has shown to be reluctant with regard to its adoption, despite many promising results confirming its suitability in Europe. Therefore, this European Conference on Green Carbon provides an opportunity to take a leap forward in terms of sharing farmers experiences on Conservation Agriculture across Europe, reviewing the recent progress made in knowledge generation regarding Conservation Agriculture, and to disseminate the outcomes of the currently running LIFE+ Agricarbon (LIFE08 ENV/E/000129). The slogan of ‘Green Carbon’ chosen for this Conference attempts to clarify and highlight the indivisible yet vital link between soil organic carbon and the role that soil health plays in the sustainability of agricultural production and in the flow of ecosystem services. Nevertheless, the topics addressed by the Green Carbon Conference are not only related to the importance of soil organic carbon for the overall soil quality and health, but also include other sustainability issues intimately related to the role of soil carbon such as landscape scale ecosystem functions and services, climate change mitigation and carbon offset, and economic aspects. This Conference also seeks to alert and inform EU policy stakeholders and technical officers of the urgent need to adopt sustainable soil and production practices of Conservation Agriculture to contribute to the objectives of Europe 2020, the EU's growth strategy for the coming decades

    Implementation of MANET routing protocols on OMNeT++

    Full text link
    This work describes how some of the most popular ad hoc routing protocols (DYMO, DSR, AODV) have been implemented for the INET library of OMNeT++ simulator tool. The developed modules have been programmed so they can be easily extensible to include future routing MANET protocols

    Making Climate Change Mitigation and Adaptability Real in Africa with Conservation Agriculture

    Get PDF
    In this report, the authors have gathered essential information on how the agricultural sector can respond to climate change through Conservation Agriculture (CA). This document aims to serve as a basis for decision-making based on science and agricultural experimentation in Africa

    Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks

    Full text link
    [EN] Intrusion detection system (IDS) is regarded as the second line of defense against network anomalies and threats. IDS plays an important role in network security. There are many techniques which are used to design IDSs for specific scenario and applications. Artificial intelligence techniques are widely used for threats detection. This paper presents a critical study on genetic algorithm, artificial immune, and artificial neural network (ANN) based IDSs techniques used in wireless sensor network (WSN)The authors extend their appreciation to the Distinguished Scientist Fellowship Program(DSFP) at King Saud University for funding this research.Alrajeh, NA.; Lloret, J. (2013). Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks. International Journal of Distributed Sensor Networks. 2013(351047):1-6. https://doi.org/10.1155/2013/351047S16201335104

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Comparative effectiveness of autologous hematopoietic stem cell transplant vs fingolimod, natalizumab, and ocrelizumab in highly active relapsing-remitting multiple sclerosis

    Get PDF
    Importance: Autologous hematopoietic stem cell transplant (AHSCT) is available for treatment of highly active multiple sclerosis (MS). Objective: To compare the effectiveness of AHSCT vs fingolimod, natalizumab, and ocrelizumab in relapsing-remitting MS by emulating pairwise trials. Design, Setting, and Participants: This comparative treatment effectiveness study included 6 specialist MS centers with AHSCT programs and international MSBase registry between 2006 and 2021. The study included patients with relapsing-remitting MS treated with AHSCT, fingolimod, natalizumab, or ocrelizumab with 2 or more years study follow-up including 2 or more disability assessments. Patients were matched on a propensity score derived from clinical and demographic characteristics. Exposure: AHSCT vs fingolimod, natalizumab, or ocrelizumab. Main outcomes: Pairwise-censored groups were compared on annualized relapse rates (ARR) and freedom from relapses and 6-month confirmed Expanded Disability Status Scale (EDSS) score worsening and improvement. Results: Of 4915 individuals, 167 were treated with AHSCT; 2558, fingolimod; 1490, natalizumab; and 700, ocrelizumab. The prematch AHSCT cohort was younger and with greater disability than the fingolimod, natalizumab, and ocrelizumab cohorts; the matched groups were closely aligned. The proportion of women ranged from 65% to 70%, and the mean (SD) age ranged from 35.3 (9.4) to 37.1 (10.6) years. The mean (SD) disease duration ranged from 7.9 (5.6) to 8.7 (5.4) years, EDSS score ranged from 3.5 (1.6) to 3.9 (1.9), and frequency of relapses ranged from 0.77 (0.94) to 0.86 (0.89) in the preceding year. Compared with the fingolimod group (769 [30.0%]), AHSCT (144 [86.2%]) was associated with fewer relapses (ARR: mean [SD], 0.09 [0.30] vs 0.20 [0.44]), similar risk of disability worsening (hazard ratio [HR], 1.70; 95% CI, 0.91-3.17), and higher chance of disability improvement (HR, 2.70; 95% CI, 1.71-4.26) over 5 years. Compared with natalizumab (730 [49.0%]), AHSCT (146 [87.4%]) was associated with marginally lower ARR (mean [SD], 0.08 [0.31] vs 0.10 [0.34]), similar risk of disability worsening (HR, 1.06; 95% CI, 0.54-2.09), and higher chance of disability improvement (HR, 2.68; 95% CI, 1.72-4.18) over 5 years. AHSCT (110 [65.9%]) and ocrelizumab (343 [49.0%]) were associated with similar ARR (mean [SD], 0.09 [0.34] vs 0.06 [0.32]), disability worsening (HR, 1.77; 95% CI, 0.61-5.08), and disability improvement (HR, 1.37; 95% CI, 0.66-2.82) over 3 years. AHSCT-related mortality occurred in 1 of 159 patients (0.6%). Conclusion: In this study, the association of AHSCT with preventing relapses and facilitating recovery from disability was considerably superior to fingolimod and marginally superior to natalizumab. This study did not find evidence for difference in the effectiveness of AHSCT and ocrelizumab over a shorter available follow-up time

    A Review on the Fundamentals and Practical Implementation Details of Strongly Coupled Magnetic Resonant Technology for Wireless Power Transfer

    No full text
    Users are increasing their demands on the home appliances they utilize by requiring them to be powered anywhere and anytime. In order to satisfy this need, wireless power transfer helps transfer energy between objects without conductors. For domestic scenarios, strongly magnetic resonant technology offers a method to enable wireless power transfer, even when there exist intermediate non-metallic objects between the wireless power source and the load. This paper reviews this technology with a comprehensive explanation about its fundamentals and physical principles. Some practical issues are also analyzed in this work. Particularly, how the control can be designed and how the coils are built. Finally, this paper also addresses the study about the features of other technologies to power home appliances without conductors. They can be foreseen as the technological competitors of strongly coupled magnetic resonant systems
    corecore